The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles
نویسندگان
چکیده
We describe herein the significance of a sodium citrate and tannic acid mixture in the synthesis of spherical silver nanoparticles (AgNPs). Monodisperse AgNPs were synthesized via reduction of silver nitrate using a mixture of two chemical agents: sodium citrate and tannic acid. The shape, size and size distribution of silver particles were determined by UV-Vis spectroscopy, dynamic light scattering (DLS) and scanning transmission electron microscopy (STEM). Special attention is given to understanding and experimentally confirming the exact role of the reagents (sodium citrate and tannic acid present in the reaction mixture) in AgNP synthesis. The oxidation and reduction potentials of silver, tannic acid and sodium citrate in their mixtures were determined using cyclic voltammetry. Possible structures of tannic acid and its adducts with citric acid were investigated in aqueous solution by performing computer simulations in conjunction with the semi-empirical PM7 method. The lowest energy structures found from the preliminary conformational search are shown, and the strength of the interaction between the two molecules was calculated. The compounds present on the surface of the AgNPs were identified using FT-IR spectroscopy, and the results are compared with the IR spectrum of tannic acid theoretically calculated using PM6 and PM7 methods. The obtained results clearly indicate that the combined use of sodium citrate and tannic acid produces monodisperse spherical AgNPs, as it allows control of the nucleation, growth and stabilization of the synthesis process. Graphical abstractᅟ.
منابع مشابه
Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity
A method for the controllable synthesis of silver nanoparticles based on a complexing agent method was developed. Citric acid was used as a complexing agent. The effect of pH (1.6 to 5.17) on the size and net height (as obtained from XRD analyses) of silver nanoparticles was investigated. The nanoparticles (10 to 40 nm) were characterized using XRD, TEM, SEM, EDX, UV-Vis spectrosco...
متن کاملSynthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملPhysico-Acoustic Study on Thermal Conductivity of Silver Nanofluid
Low transmission of heat is one of the major problems for heat exchanger fluids in many industrial and scientific applications. This includes cooling of the engines, high power transformers to heat exchangers in solar hot water panels or in refrigeration systems. In order to tackle these problems in thermal industries, nanofluids could play a significant role as excellent heat exchanger materia...
متن کاملDesign and Evaluation and Synthesis a Starch-Capped Silver NanoParticles Sensor and Determination trace Sulfacetamide Drug in the Presence Sodium borohydride in Blood and Urine Samples with Kinetic Spectrophotometric Method
A new Kinetic Spectrophotometic method for the Determination of trace amount Sulfacetamide Drug into real samples has been described based with silver nanoparticles starch-capped sensor, by sodium borohydride. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 347.5 nm. 1.0×10-2 molL-1 silver nanoparticles starch-capped sensor, 2.0×10-3 mol L-1 sodium...
متن کاملApplication of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA) on Testing for Surface-Coated Silver Nanoparticles
Four different manufactured surface-coated silver nanoparticles (AgNPs) with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA) using multi-species of luminescent bacteria. The salt stability of four different AgNPs wa...
متن کامل